

The purpose of our Technology Transfer unit is to partner with the Rutgers community to encourage deliberate innovation, protect and leverage Rutgers intellectual property, foster collaboration with industry, and enable entrepreneurship.

For Licensing/Collaborations Opportunities:

marketingbd@research.rutgers.edu

https://research.rutgers.edu/researchersupport/innovate

https://techfinder.rutgers.edu/

A treatment to promote skin wound healing

Inventor: William Gause & Rick Maizels NJMS, Rutgers Health & School of Infection-Immunity, Univ of Glasgow

Rutgers docket number/s: S11-119

For Licensing/Collaborations Opportunities:

marketing bd @research.rutgers.edu

innovate@research.rutgers.edu

DO NOT CIRCULATE WITHOUT PRIOR PERMISSION

Cells in the helminth-induced type 2 response play a role in the tissue repair response.

Migrating Nb larvae induces lung injury and airway neutrophilia, which are quickly resolved starting 4 days after inoculation

IL-4 or IL-13-mediated signaling controls acute hemorrhaging and inflammation after *N. brasiliensis* lung migration at day 4

ES products including synthesized small molecule analogues are now being tested in experimental models and clinical trials

HES accelerates wound closure in a 2-D in vitro scratch test.

ES products include proteins and associated moieties

TGF-β Mimic (TGM)

- A member of the CCP (Complement Control Protein) superfamily
- Structurally distinct from TGF-β
- Shares no sequence homology with TGF-β
- Twice the size (404aa) of TGF-β homodimer
- Is constitutively active compared to TGF-β which has to be processed

in vivo wound biopsy study design

Tegaderm

TGM + 1.5% Carboxymethylcellulose/PBS

TGM significantly enhances the rate of wound closure with increases in serous volume and concentrations of factors associated with augmented wound healing.

Enhanced tissue thickness suggests that TGM is amplifying the formation and increasing the strength of the developing tissue as it heals and matures.

RUTGERS UNIVERSITY
Office for Research

With TGM treatment, there was a significant increase in wound leading-edge thickness by day 4, which correlates with the enhanced wound closure that was first observed at this early time point.

Enhanced basketweave collagen morphology and formation of hair follicles with complete sebaceous glands were observed

Day 12

Hair follicles

TGM mediates enhanced wound healing through TGF- βR domain activity.

 Domains required for activity

 Domain 1
 Domain 2
 Domain 3
 Domain 4
 Domain 5

 TGM-1
 100
 100
 100
 100
 100

Day 7
TGM
PBS Whole

Modified from Smyth et al, Int J Parasitol, 2018, 48(5):379-385

TGM TGM
Domains 1-3 Domains 4-5
(TGF-ßR activity) (no TGF-ßR activity)

Summary

- Daily TGM application significantly enhances the rate of cutaneous wound closure at 5 days following injury.
- TGM demonstrated overall better wound reorganization at later phases as observed through collagen orientation and hair follicles.
- TGM's activity leads to increased inflammation into the wound bed including accumulation of migratory Ly6C+ myeloid cells.
- TGM treatment reprograms macrophages favoring expansion of a CD206subset expressing markers associated with wound healing.
- TGM's wound healing activity and macrophage modulation is predominantly mediated through TGF-ßR signaling.

https://techfinder.rutgers.edu/tech/A_treatment_to_promote_skin_wound_healing

TGM demonstrates greater therapeutic potential compared to TGF-B

- Is constitutively active compared to TGF- β which had to be processed
- Binds independently to both TβRI and TβRII
 - TGM binds directly to TβRI with high affinity
- TGM proved to be more active at a lower dose
- Easier to produce
- Low immunogenicity
- Very stable during storage

Acknowledgments

Dr. William Gause Laboratory

Katherine Lothstein

Fei Chen

Wenhui Wu

Ariel Millman

Pankaj Mishra

Mark Palma

Darine El-Naccache

Dr. Rick Maizels Laboratory

Dr. Danielle Smyth
Claire Ciancia
Marta Campillo Poveda

Dr. Joseph Urban USDA

Dr. Yosuke Kumamoto Laboratory

Dr. Naoya Tatsumi Jihad El-Fenej Alejandro Davila-Pagan

Dr. Amariliz Rivera Laboratory

Keyi Wang

Dr. Jason Weinstein Laboratory

Gina Sanchez

Dr. Alexander Lemenze

NJMS Flow Cytometry and Immunology Core Laboratory

> Dr. Sukhwinder Singh Tammy Galenkamp

Cellular Imaging and Histology Core

Luke Fritzky
Joel Pierre

The Center for Advanced Proteomics Research

Dr. Hong Li Dr. Tong Liu

Comparative Medicine Resources (CMR)

Marleata Anderson

This research was supported in part by NIH:1R01AI131634 and the Amelior Foundation.